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ABSTRACT 
 
The average quay crane (QC) rate at most marine container ports is currently hovering around 
25 moves per hour.  In many cases, under current operating conditions, this rate can be 
improved only marginally by increasing the number of yard trucks (YTs) and yard cranes 
(YCs) per QC.  However, a QC is technically capable of making 40 moves per hour when 
YTs are always on hand at the quay to deliver/receive the appropriate containers to/from the 
QC.  How, then, can ports ever achieve QC rates approaching 40 moves per hour?  Using a 
home-made simulation model of a container terminal, we show that the answer lies in the 
container storage and YC scheduling algorithms used within the container yard.  For two 
different container terminals, we propose and evaluate various combinations of container 
storage and YC scheduling algorithms, and we identify which combination is the best.  Our 
study ignores YTs and focuses on the question of whether it is possible to schedule YCs so 
they meet the deadlines set by QCs working at 40 moves per hour.  Results show the speed, 
efficiency, and effectiveness of the proposed algorithms. 
 
Key Words: Maritime Container Terminal, Cargo Handling, Yard Crane Scheduling. 
 

1.  INTRODUCTION AND LITERATURE REVIEW 
The recent surge in international trade of consumer goods has placed the maritime container 
shipping industry at the center of the global economy.  Today almost all overseas shipping of 
furniture, toys, footwear, clothing, auto parts, bananas, computers, and electronics 
components is done via standardized 20', 40', or 45' long steel containers aboard deep-sea 
container vessels.  As of October 2005, the world cellular fleet consisted of 3488 vessels 
solely devoted to transporting containerized cargo.  The total capacity of these vessels was 
some 7.77 million twenty-foot containers (Containerisation International, Nov 2005).  
Altogether, there are roughly 15 million containers currently circulating among thousands of 
factories, warehouses, distribution centers, retail stores, seaports, highways, railways, and 
transit depots around the world.  With today's just-in-time global supply chain, improving the 
efficiency of container shipping processes is more important than ever. 

This paper focuses on operational problems inside maritime container transhipment 
terminals.  Container terminals are the places in seaports where container vessels are loaded 
and unloaded and containers are temporarily stored before changing to their next mode of 
transport—rail, road, or sea.  Excellent surveys of recent research on container terminal 
operations have been done by Meersmans and Dekker (2001), Steenken et al (2004), and Vis 
and de Koster (2003).  Good overviews of container terminal operations and equipment are 
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model two genetic algorithms which provide solutions to the container storage problem.  

given in Kozan (2000) and Murty et al (2005).  The storage area inside a container terminal, 
called the stackyard, typically has space for thousands of stacks of containers, with up to 6 
containers per stack.  The stackyard is divided into rectangular regions, called blocks, where a 
grid has been painted on the pavement indicating the positions where containers should be 
placed.  Traffic lanes for trucks occupy the spaces between blocks.  A typical block is six 
stacks (6*8.5 feet) wide and thirty stacks (30*20 feet) long.  Blocks are divided along their 
length into 20' sections called slots.  Containers are stored side-by-side and are stacked on top 
of one another in rows in rectilinear fashion in each slot (Figure 1).  In many terminals, yard 
zones are formed by grouping adjacent linear blocks together.  In the left portion of Figure 2, 
Blocks 1 and 2 make up one zone, Blocks 3 and 4 constitute another zone, and so on.  Yard 
cranes move easily within yard zones but take a long time to move between different zones. 

To manage cargo movement inside a stackyard, companies must have protocols for (1) 
determining storage locations for incoming cargo and (2) scheduling yard cranes to store and 
retrieve containers.  In this paper, we develop several on-line algorithms for handling these 
two tasks and we evaluate their performance using a home-made computer simulation model 
that tracks the movement of every container that passes through a container terminal during a 
several-week period.  Two container terminals of varying shape, storage capacity, and 
expected cargo throughput are considered.  For each terminal, we identify the most suitable 
algorithms for container storage and yard crane scheduling among several alternatives.  We 
focus on land scarce, sea-to-sea transhipment container terminals that deploy rubber tired 
gantry cranes (RTGCs), also known as transtainers (TTs).  Such a terminal is depicted in 
Figure 1.  In such terminals, the majority of containers are export containers, i.e. containers 
whose next mode of transport is deep-sea vessel.  Some of our results are applicable to other 
kinds of terminals as well.  The proposed algorithms are speedy routines that are tested on 
live data generated by the simulation model.  We now survey the literature on container 
storage, YC scheduling, and simulation studies of container terminals. 
 

 
Figure 1.  A land-scarce container terminal: stackyard, TTs (foreground), QCs (upper right). 

1.1.  Container storage 
Among hundreds of articles on container terminal operations, relatively few deal with 

container storage decisions.  Of particular interest to us here is the storage of export 
containers.  Extensive general discussions of export container storage can be found in Chen 
(1999) and Taleb-Ibrahimi et al (1993).  The latter article develops analytical models to 
compare the performance of static space allocation (i.e. sort and store) strategies versus 
dynamic space allocation (i.e. re-marshalling) strategies.  The former strategies do not allow a 
container’s position to vary in the yard during its stay at the terminal while the latter strategies 
allow repositioning of containers.  Kim and Bae (1998) propose a methodology for re-
marshalling export containers.  Bruzzone and Signorile (1998) imbed within a simulation 
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These genetic algorithms schedule cluster creation and optimally locate clusters of containers 
in the export stackyard.  They minimize the sum of the distances traveled by all containers 
over the planning horizon, but do not consider yard crane interference.  Murty et al (2005) 
and Zhang et al (2003) consider import and export containers and assign storage spaces to 
arriving containers so the fill ratios of all blocks remain nearly equal.  Consecutive trucks in 
the arriving stream are dispersed all around the stackyard to minimize traffic congestion.  
They allow import and export containers to be mixed at the block level.  Kim et al (2000) 
propose a method for determining the storage location of an arriving export container given 
its weight.  Kim and Park (2003) determine the storage locations of export containers over a 
certain horizon by categorizing containers according to the vessels they will be loaded onto, 
but do not consider yard crane interference.  Preston and Kozan (2001) show how genetic 
algorithms can be used to determine storage locations for containers given fixed container 
handling schedules.  Ambrosino and Sciomachen (2003) show how different yard 
management policies affect the length of time required to load a single containership. 

In this study, we focus on static space allocation strategies for export container stor
 designed to minimize the occurrence of yard crane overloading during actual yard 

operations.  Yard crane overloading occurs when the number of container moves set to occur 
in a small region of the yard over a certain time horizon exceeds a YC’s actual capacity to 
make these moves.  It is the most important consideration in yard crane operations, but is not 
addressed by the container storage policies in the above studies.  In Section 2, we discuss yard 
crane overloading in detail and introduce container storage strategies designed to prevent it. 

1.2.  Yard crane scheduling 

Many papers consider the s
 crane must retrieve containers from specified groups according to a fixed sequence, 

without due dates or release times, while minimizing travel distance.  Since containers 
belonging to a specific group may be stored in multiple locations, both the YC route and 
number of containers picked up at each slot are decisions to be made (Kim and Kim (1999), 
Kim and Kim (2003), Kim and Kim (1997), and Narasimhan and Palekar (2002)).  Ng and 
Mak (2005) focus on a single YC scheduling problem where every job has a fixed location 
and ready time and the goal is to minimize job waiting time. 

For the scheduling of multiple yard cranes, Cheung et a
ang et al (2002) develop methods for allocating yard cranes among yard blocks in an entire 

terminal and for scheduling cross-gantry moves, but do not consider individual container 
moves or regular gantry moves.  Kim and Bae (1998) construct detailed RTGC schedules for 
the re-marshalling operation within a single yard block.  Kim et al (2004) construct detailed 
RTGC schedules for small scenarios involving the loading of a single vessel in isolation.  Kim 
and Park (2004) use a greedy randomized adaptive search procedure to construct detailed 
schedules for QCs to process a vessel considering QC interference constraints.  The basic 
ideas of their study may prove useful to future research on YC scheduling.  Ng (2005) is the 
only paper we could find which proposes a method for constructing detailed schedules for all 
RTGCs at a container terminal on a continual basis.  However, this study does not enforce the 
constraint that yard cranes must be separated by a minimum distance. 

In this paper, we present a general method for constructing detaile
nes at a container terminal on a continual basis, and we also consider crane separation 

constraints.  In addition, our method is embedded in a simulation program to demonstrate that 
it works on a real-time data feed.  In Section 3, we describe this method in detail. 
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1.3.  Simulation studies of container terminals 
Fifteen studies on the simulation of container terminal operations were found in the 

literature.  Their emphasis ranges from strategic to operational aspects of container terminal 
management.  The simulation program developed in the present study is designed to facilitate 
the investigation of container storage and yard crane scheduling operations.  The components 
of a container terminal directly related to these two tasks—QCs, YCs, containers, and the 
stackyard—are modeled in relative detail while other components—most notably vessels—
are modelled in less detail.  Some components (e.g. YTs) are not modeled at all.  To our 
knowledge, this is the first seaport simulation program that allows for a combined, detailed 
study of container storage and YC scheduling algorithms.  Details are given in Section 4. 

2.  CONTAINER STORAGE 
Throughout this paper, we assume that container stacks are homogenous.  In other words, the 
container terminal adopts a storage policy whereby all containers in the same stack belong to 
the same container group.  Containers in the same group are indistinguishable for vessel 
loading purposes because they share the same destination vessel and length, and probably the 
same destination port and weight class too.  The advantage of a homogenous stacking policy 
is that containers never need to be shifted from one stack to another to dig out cargo at the 
bottom of a stack.  We also assume that the terminal operates according to a weekly schedule.  
In other words, the terminal sees one vessel from a particular liner service each week at a 
regular time.  The vessels that are seen each week follow the same routes as their respective 
counterparts from the previous week.  Finally, we assume all containers are 20’ long. 

The container storage policies we consider in this paper are designed to minimize yard 
crane overloading.  Yard crane overloading, sometimes referred to as yard crane interference, 
is a major concern at terminals where RTGCs are deployed.  In such terminals, two yard 
cranes cannot operate simultaneously unless they are a minimum distance (e.g. 8 slots = 160 
feet) apart.  Thus, a maximum of one RTGC can be working at a time in any given 8-slot 
portion of the container yard.  If the number of container moves scheduled in this area during 
a certain time interval exceeds the number of moves a yard crane can make, a yard crane is 
overloaded.  Put another way, if YC A is working at slot #8 in a block, there can be no other 
activities in slots #1 - #15.  A typical block has 6 rows with containers stacked 6 high.  Thus 
there are up to 36 containers per slot and up to 36*15 = 540 storage locations that cannot be 
accessed while YC A is working.  Very large terminals have as many as 2000 slots in the 
stackyard.  While YC A is working, 15 out of 2000 slots are not accessible.  In other words, 
almost 1% of the cargo in the yard is inaccessible.  This constraint poses major problems for 
the flow of operations inside land-scarce container terminals.  If containers cannot be stored 
or retrieved in the yard at the correct locations or times, the entire chain of events involved in 
transhipping a container from one vessel to another (i.e. from vessel to QC to YT to YC, then 
from YC to YT to QC to vessel) will be disrupted and vessels will be delayed and/or cargo 
will not be loaded onto vessels before they depart. 

One way to avoid yard crane overloading is to choose good storage locations for containers 
immediately upon their arrival at the terminal.  Containers that are expected to be loaded at 
the same time onto (one or more) vessels should be stored in locations that are at least 8 slots 
apart.  Unfortunately, since containers can arrive at a terminal up to a week in advance of their 
departure, it is impossible to precisely know a container’s loading time when the container 
enters the terminal.  All that is known is the container’s destination vessel and this vessel’s 
expected arrival and departure times, which are fairly stable quantities.  Within the vessel’s 
stay, it is difficult to establish a smaller time window when the container will be loaded 
because the work lists for that vessel’s QCs are not yet determined.  Making a rough sketch of 
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the QC work lists before they are actually created may help to shorten the time interval, but 
this process is risky and can only go so far.  Indeed, even for vessels belonging to liner 
services that call at the terminal at regular times each week, the QC job lists can show great 
variance from week to week.  For example, in week 1, the QCs may start working at the front 
of the vessel and work their way backwards, whereas in week 2, they may start at the back.  In 
week 3 the processing may consist of dozens of small patches of unloading followed by 
loading, but in week 4 all unloading might be completed before any loading begins.  Overall, 
the only reliable departure information we have for a container when it arrives at a terminal is 
its destination vessel and this vessel’s expected arrival and departure times. 

Many container storage policies can be developed for minimizing yard crane overloading 
when the time windows for container departure are large.  Among these, we choose a 
template-based policy in which the containers destined for a given liner service may only be 
stored in certain portions of the yard.  We construct a yard template that governs all container 
storage activities for an extended period and remains fixed as long as the set of liner services 
visiting the terminal each week and their expected arrival and departure times remain 
unchanged.  Tables 1-3 and Mathematical Program (I) show how input data is used to 
construct a yard template.  The first step is to look at the total stackyard capacity, the 
stackyard shape (e.g. the block sizes), and the expected throughput for each vessel and then 
devise a yard partition.  As its name suggests, a yard partition is an exhaustive partitioning of 
the stackyard into disjoint regions.  Each region consists of one or more contiguous stacks and 
is devoted to the storage of containers that will be loaded onto a very small subset of vessels 
(preferably just a single vessel).  The maximum size of a region is an entire block.  Once the 
yard partition is determined and the parameters for Mathematical Program (I) are known 
(Table 2), Mathematical Program (I) is solved.  The resulting solution gives a yard template 
which minimizes the long run estimated amount of yard crane overloading experienced in the 
terminal.  Figure 2 shows two possible yard templates based on different yard partitions for a 
10-block container terminal that sees 5 equally-sized vessels each week. 

In Mathematical Program (I), constraint (1) ensures that each yard region is utilized.  
Constraint (2) ensures that enough yard space is reserved for storing the containers for each 
liner service, assuming that each region stores containers that will be loaded onto a single 
liner service.  If it is clear at the outset that some regions will store containers belonging to 
more than one vessel, this constraint needs to be modified.  Constraint (3) relates the two 
kinds of decision variables to each other. 

The objective is to minimize a combination of three things: (a) the likelihood that two or 
more containers will be simultaneously retrieved from a small portion of the yard (where only 
one yard crane may work at a time); (b) the likelihood that two or more containers will be 

 

 
Figure 2.  Two possible yard templates for a 10-block terminal with 5 vessel calls per week. 

vessel 1: 
 
vessel 2: 
 
vessel 3: 
 
vessel 4: 
 
vessel 5:

Storage areas 
devoted to

Vessel Vessel Vessel Vessel

Block 2 Block 1 

Block 3 Block 4 

Block 5 Block 6 

Block 7 Block 8 

Block 10 Block 9 



Proceedings of the Second International Intelligent Logistics Systems Conference 2006         

 

 19.6

simultaneously retrieved from the same yard zone; and (c) the expected distance that 
containers travel over the course of a week from their stack locations to their destination 
vessels.  The goal of sub-objective (a) is to prevent yard-crane overloading.  The goal of (b) is 
to spread workload among different yard zones so that yard cranes do not have to make 
lengthy, inter-zone cross-gantry moves to help absorb the workload in other zones.  Overall, 
we believe that sub-objective (a) is very important and therefore suggest that W1 and W2 take 
small values.  In particular, because the number of terms in sub-objective (b) is much higher 
than (a), we suggest W1 = 0.00001.  Note that the first two sub-objectives are quadratic as we 

 
Table 1.  Indices for Mathematical Program (I) 

r yard region (r = 1 to R) 
s,t stack number (s,t = 1 to S) 
v,w vessel (i.e. liner service) (v,w = 1 to V)

 
Table 2.  Parameters for Mathematical Program (I) 

R Number of regions into which the yard is divided as specified by the yard partition (integer, > 0). 
S Number of stacks in the yard (integer, > 0). 
Mv Minimum number of stacks needed for storing the containers destined for vessel v (integer, > 0). 
Sr Number of stacks in yard region r as specified by the yard partition (integer, > 0). 
Ir,s = 1 if yard region r contains stack s (binary). 
V Number of weekly liner services visiting the terminal (integer, > 0). 
Tv,w Arbitrary measure of the “expected amount of time overlap” for vessels v and w at the terminal 

each week.  If vessels v and w are expected to be at the terminal during overlapping time intervals, 
we suggest that Tv,w be equal to the duration of the overlap in minutes.  For the particular case v = 
w, we suggest this amount be multiplied by 10.  If vessels v and w are expected to be at the 
terminal during non-overlapping time intervals, we suggest that Tv,w be equal to the negative of the 
duration (in minutes) of the smallest interval that separates the expected departure of one vessel 
from the expected arrival of the other vessel, divided by 100 (real). 

Sep Minimum difference in slot numbers allowed for two cranes at the same time (e.g. 8, integer, > 0). 
Cs,t = 1 if stacks s and t are less than Sep slots apart and s ≠  t (binary). 
Zs,t = 1 if stacks s and t are in the same yard zone and s ≠  t (binary). 
Ds,v Distance from stack s to the expected berthing position of vessel v (real, > 0). 
W1 ,W2 Weighting factors used to assign relative importance to portions of the objective function (real). 

 
Table 3.  Decision variables for Mathematical Program (I) 

Xr,v = 1 if region r stores containers destined for vessel v (binary). 
Ys,v = 1 if stack s stores containers destined for vessel v (binary). 

 
Mathematical Progam (I): 
 

      minimize  ∑ ∑∑ ∑∑∑ ∑∑
= == = == = = ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛S

s

V

v
vsvs

Zt

V

v

V

w
wtvswv

Ct

V

v

V

w
wtvswv YDWYYTWYYT

tsts1 1
,,2

1: 1 1
,,,1

1: 1 1
,,,

,,

 

      subject to           (1) rX
V

v
vr ∀≥∑

=

1
1

,

 

vMXS v

R

r
vrr ∀≥∑

=1
,          (2) 

 
vrYXS

srIs
vsvrr ∀∀= ∑

=1:
,,

,

         (3) 



Proceedings of the Second International Intelligent Logistics Systems Conference 2006         

 

 19.7

are minimizing interaction cost (Carlson and Nemhauser (1966)). 
In the first two sub-objectives, we confine our attention to yard congestion caused by 

vessel loading operations.  An online algorithm is needed for managing congestion caused by 
unloading operations.  Such an online algorithm would be activated every time a container is 
about to be discharged from a vessel and could possibly be (i) interweaved with the template 
policy considered here; (ii) a stand-alone algorithm that still considers unloading (immediate) 
as well as loading (projected future) congestion; or (iii) a stand-alone algorithm that only 
considers unloading (immediate) congestion.  All three options have promise.  In this study, 
we only pursue option (i).  Future studies will consider options (ii) and (iii).  The online 
portion of our container storage policy is explained in Section 4. 

Solving Mathematical Program (I) directly is a hopeless task, so we resort to using a 
simulated annealing neighbourhood search heuristic.  The procedure starts with an initial 
feasible solution which can be generated easily.  During each iteration, a neighboring solution 
is generated and the principles of simulated annealing are used to determine whether or not 
the neighbor replaces the initial solution.  In the experiments described in Section 4, we 
perform 10,000 iterations per simulation run.  To save CPU time, W1 and W2 are both 0. 

3.  YARD CRANE SCHEDULING 

Among many different ways to model the multiple yard crane scheduling problem, we take 
the following approach.  We assume the QC work lists are autonomous sequences that are 
constructed to maximize vessel processing efficiency assuming YTs are always available at 
the quay (i.e. apron) with the appropriate containers or empty trailers as desired by the QCs.  
Our YC scheduling algorithm is designed to react to last-minute changes in the QC work lists, 
but does not play any role in deciding what these changes should be. 

The work list for each QC is an ordered list of container moves expected to take place in 
the ensuing two-hour period plus an unordered list of moves for the two-hour period after 
that.  Every move on the list has either one or zero yard locations assigned to it.  For 
unloading (loading) moves, this location is the stack in the yard where the container is to be 
stored (retrieved).  For unloading moves, it is usually a stack in the yard that is partially filled 
by containers belonging to the same group as the unloaded container.  An unloading move 
that does not have an associated storage location has either (a) no stacks in the yard storing 
containers from its group or (b) one or more stacks in the yard storing containers from its 
group that are all full.  For loading moves that do not have associated storage locations, the 
exact stacks that will provide the containers have yet to be determined.  In either case, some 
kind of online algorithm is needed to determine the storage (retrieval) locations of these 
containers as the time for unloading (loading) approaches.   

For the purposes of yard crane scheduling, we only pay attention to those moves in the QC 
work lists that are ordered (i.e. are scheduled to take place within the next two hours) and 
have associated yard locations.  Since they are ordered, tentative QC job start times can be 
assigned to these moves.  The list of all such moves for a given QC is a QC fixed work list.  
Portions of two QC fixed work lists are shown in Table 4, columns 1-6 (L = load,U = unload). 

The QC fixed work lists can be translated into an overall yard work list (Table 4, columns 
5-8) using readily available data on average container handling time for QCs and YCs and 
average travel time for YTs between pairs of locations in the terminal.  Table 4 is constructed 
assuming the QC and YC handling times are 1.5 and 3 minutes respectively; the YT travel 
times between QC 3 and blocks (5,8) are (4,3) minutes respectively; and the YT travel times 
between QC 9 and blocks (6,13,2,1) are (2,8,3,5) minutes respectively.  The YT and YC times 
are equal to the average times observed during actual operations plus some buffer time.  The 
QC handling time assumes the QC is performing 40 moves per hour.  Note that we assume 
YTs are always on hand to receive containers from YCs and QCs.  The yard work list is the 
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Table 4.  Information from two QC fixed work lists is translated into a yard work list. 
crane move # QC start time QC finish time type yard location YC start time YC finish time 

 23 06:24:17 06:25:47 L bl 5, sl 7, rw 3 06:17:17 06:20:17 
 24 06:25:47 06:27:17 L bl 5, sl 7, rw 3 06:18:47 06:21:47 

QC 3 25 06:27:17 06:28:47 L bl 8, sl 22, rw 1 06:21:17 06:24:17 
 26 06:28:47 06:30:17 L bl 8, sl 22, rw 1 06:22:47 06:25:47 
 27 06:30:17 06:31:47 L bl 8, sl 22, rw 1 06:24:17 06:27:17 
 81 06:26:00 06:27:30 U bl 6, sl 40, rw 2 06:29:30 06:32:30 

QC 9 82 06:27:30 06:29:00 U bl 13, sl 9, rw 2 06:37:00 06:40:00 
 83 06:29:00 06:30:30 U bl 2, sl 14, rw 6 06:33:30 06:36:30 
 84 06:30:30 06:32:00 U bl 1, sl 32, rw 4 06:37:00 06:40:00 

 
basis for our yard crane scheduling algorithms. 

The scheduling of YCs according to the yard work list is now discussed.  We first split the 
overall yard work list into several smaller lists, one for each yard zone.  Our YC scheduling 
algorithms only consider YCs within a single yard zone.  The study of inter-zone cross-gantry 
moves is a topic soon to be considered but for now is out of the scope of this paper.   

3.1.  Initial approach 
A realistic model of the YC scheduling problem needs to consider YC gantry activities 
between container handling jobs.  Since YC gantry speed is typically 1 slot every 4 seconds, it 
might make sense to discretize the time axis into 4-second intervals.  Every activity is then 
scheduled to take place during an integral number of consecutive time intervals.  Container 
handling moves are assumed to require exactly 45 time intervals for completion (45*4 sec = 
180 sec = 3 minutes).  Gantry moves require an integral number of intervals depending on the 
origin and destination slots.  The YC start times in Table 4, column 7 are then rounded to the 
nearest 4 seconds; times for yard storage (retrieval) moves are rounded up (down).  The YC 
finish times are also adjusted.  Time intervals are used instead of hours, minutes, and seconds 
as the unit of temporal measure.  Each move in the yard work list has a target time interval for 
starting the move in the yard.  For retrieval moves, this is the latest time interval when the 
move can be started and still meet the deadline set by the QCs.  For storage moves, this is the 
earliest time interval following the release of the job in the yard.   

We could then construct an integer programming model for YC scheduling whose decision 
variables are given in Table 5.  Such a program fairly accurately represents crane gantry time.  
However, even for a relatively small scenario of a 60-slot block with 2 YCs and 25 container 
moves to be made in a one-hour look-ahead window, the number of binary variables exceeds 
150,000.  Integer programming is therefore useless.  Heuristic methods may prove useful, 
especially when the number of YCs is 1 or 2.  But such methods appear insufficient for 
handling YC interference constraints when there are 3 or more cranes.  In the next section, we 
present a novel method for yard crane scheduling which overcomes the difficulty presented 
by YC interference.  The method does not explicitly consider cranes at the outset, but 
nonetheless generates realistic schedules for any number of cranes C in a very speedy manner. 
 
Table 5.  Decision variables for YC scheduling considering detailed gantry times 

Xm,t = 1 if move m is started during time interval t, (binary). 
Ym,t = 1 if move m is being made during time interval t, (binary). 
Zc,s,t = 1 if yard crane c occupies slot s during time interval t, (binary). 

3.2.  A simpler model 

Our novel method for yard crane scheduling is a two-step procedure.  Ironically, in Step 1, we 
do not explicitly model crane movement.  Instead, we focus on the storage area proper and we 
fix the times and locations where container moves are made.  In step 2, we use dynamic 
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programming to assign cranes to jobs. 
We first choose a reference time and we discretize the time axis into 4-minute time 

intervals based on the reference time.  Each container move shall take place during exactly 
one interval and shall consist of 1 minute of yard crane gantry time followed by 3 minutes of 
container handling.  For example, in Table 4, if the reference time is 06:15:00, the YC start 
times in column 7 are adjusted to be (06:15:00, 06:15:00, 06:19:00, 06:19:00, 06:23:00, 
06:31:00, 06:39:00, 06:35:00, 06:39:00) respectively.  The YC finish times are adjusted to be 
4 minutes later.  Time intervals are used instead of hours, minutes, and seconds as the unit of 
temporal measure, and each move is assigned a target time interval.  Each YC makes at most 
one container move per interval.  During a given interval, both the gantrying and handling 
operations of different cranes start and end simultaneously; the cranes themselves are not 
modeled.  Since an RTGC container transfer takes an average of 2.2 minutes, the 3 minutes 
allotted per container move is usually adequate.  However, since RTGCs only gantry about 16 

 
Table 6.  Indices for Mathematical Program (II) 

m,n container move (m,n = 1 to M) 
t time interval (t = 1 to T) 

 
Table 7.  Parameters for Mathematical Program (II) 

C Number of yard cranes working in the zone (integer, > 0). 
M Number of individual container moves to be scheduled (integer, > 0). 
T Large number representing the number of (4-minute) time intervals on the horizon.  This should be 

large enough to allow for all M moves to be scheduled (integer, > 0). 
R Set of yard retrieval moves. 
S Set of yard storage moves (the total number of items in R and S is M). 
Trgetm Target time interval for move m in the yard.  For retrieval moves, this is the latest time interval that 

meets the deadline set by the quay cranes.  For storage moves, this is the earliest time interval 
following the release of the job in the yard (integer, > 0, ≤  T). 

Slotm Slot number where move m takes place.  We assume that if m < n, then Slotm ≤  Slotn (integer, > 0). 
Sep Minimum difference in slot numbers allowed for two cranes at the same time (e.g. 8, integer, > 0). 

 
Table 8.  Decision variables for Mathematical Program (II) 

Xm,t = 1 if move m is scheduled to take place during time interval t (binary). 
 
Mathematical Progam (II): 
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slots per minute, the 1 minute allotted for gantrying between container handling operations 
may not be adequate.  We discuss this shortly.  We now have a much simpler model of YC 
scheduling, shown in Tables 6-8 and Mathematical Program (II). 

The objective is to minimize the total amount of retrieval earliness plus storage tardiness 
for the upcoming jobs in the yard.  The unit of measurement is container-time-intervals.  This 
objective function is a substitute measure for the actual amount of earliness-tardiness, which 
is measured in container-minutes.  The actual amount of earliness-tardiness equals 4 times the 
objective value plus a quantity that depends on the reference time used to discretize the time 
axis.  Note that we do not allow retrieval lateness, which is somewhat unrealistic.  Thus the 
YCs are being scheduled so as to strictly adhere to the fixed QC schedules. 

Constraint (4) states that each move takes place during exactly 1 time interval (i.e. each 
move consists of a 1-minute gantry followed by 3 minutes of container handling).  Constraints 
(5) and (6) ensure that retrieval (storage) moves are made no later (earlier) than their target 
time intervals.  Constraint (7) ensures that no more than C moves take place in any time 
interval.  Constraint (8) ensures that cranes remain at least Sep slots apart during all time 
intervals.  For a 60-slot block with 25 container moves to be made over a one-hour horizon, 
the number of binary variables is 375, regardless of the number of YCs. 

In a real setting, the above problem must be solved often, perhaps every 3-4 minutes for a 
given yard zone, in rolling horizon fashion.  Solutions must be obtained quickly in order to be 
integrated with the terminal information system in real time.  In particular, we must guarantee 
that a solution is obtained within 1 second on one hundred percent of occasions.  Integer 
programming routines appear unsuitable for this task given their unreliable processing times. 

3.3.  Heuristic solution 
We solve the problem using the following heuristic.  For illustration purposes, assume we 

are scheduling 3 YCs for handling 22 jobs in a 12-slot, 4-row block where Sep = 2.  Figure 3 
shows this yard block and the moves to be scheduled.  Each job is indicated by a letter (R = 
retrieval, S = storage) followed by the ideal start time (i.e. Table 4, column 7).  We first 
identify the latest “R” move on the horizon.  Observing that it is the “R,37” move in row 3 
and slot 12, we choose 37 as the reference time.  The target start times of all moves are then 
modified so they equal 37 + 4k for some integer k.  Figure 4 displays the result.  We then 
employ the following routine to fix the start times so they are feasible with respect to the 
number of YCs (7) and the minimum separation between YCs (8): 
 
A. If there are no ‘R’ jobs at all, or if the start times of all ‘R’ jobs have been fixed, go to (E). 
B. Select the latest ‘R’ job on the horizon that has not been fixed.  If two or more such jobs 

tie, select the one with the latest original start time. 
C. If the job selected in (B) can be fixed without violating constraints (7) and (8) considering 

the jobs that are already fixed, fix the job and go to (A). 
D. If fixing the job selected in (B) would violate either constraint (7) or (8) considering the 

jobs that are already fixed, move its start time back (i.e. earlier) 4 minutes. Go to (A). 
E. If there are no ‘S’ jobs at all, or if the start times of all ‘S’ jobs have been fixed, stop the 

procedure.  Otherwise go to (F). 
F. Select the earliest ‘S’ job on the horizon that has not been fixed.  If two or more such jobs 

tie, select the one with the earliest original start time. 
G. If the job selected in (F) can be fixed without violating constraints (7) and (8) considering 

the jobs that are already fixed, fix the job and go to (E). 
H. If fixing the job selected in (F) would violate either constraint (7) or (8) considering the 

jobs that are already fixed, move its start time ahead (i.e. forward) 4 minutes. Go to (E). 
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Figure 5 shows the result after the heuristic has finished fixing the job start times.  Overall, 29 
iterations of the algorithm are performed, 19 for modifying/fixing the start times of the ‘R’ 
jobs and 10 for modifying/fixing the start times of the ‘S’ jobs. 

 
R,8 S,14    R,23 S,0  S,4  R,8 R,32 
 S,25 R,5   S,11 R,36   R,29 R,23  
  S,26    R,33 R,29    R,37 
S,3  R,0    R,10 R,9    R,19 
Figure 3.  Initial setup for YC scheduling heuristic. 
 
R,5 S,17    R,21 S,1  S,5  R,5 R,29 
 S,25 R,5   S,13 R,33   R,29 R,21  
  S,29    R,33 R,29    R,37 
S,5  R,-3    R,9 R,9    R,17 
Figure 4.  The job start times are adjusted according to the reference time. 
 
R,5 S,17    R,21 S,1  S,9  R,1 R,29 
 S,25 R,5   S,13 R,33   R,29 R,21  
  S,33    R,29 R,25    R,37 
S,9  R,-3    R,9 R,5    R,17 
Figure 5.  The final job start times do not violate constraints (7) and (8). 

3.4.  Dynamic programming 
After scheduling the times when all moves are performed, we use dynamic programming 
(DP) to assign yard cranes to container moves.  We first convert Figure 5 into an activity 
matrix, where each row indicates a time interval, each column indicates a slot number, and an 
‘X’ in row r column c indicates that an activity takes place in slot c during time interval r 
(Figure 6, left).  Each time interval in the activity matrix is a stage in the DP model.  The 
states in each stage of the model are the possible assignments of cranes to jobs during that 
stage.  For c cranes and j jobs, there are (c choose j) states.  In this example, there are 1 or 3 
states in each stage.  The transition cost from one state to another is the minimum total gantry 
distance travelled by all yard cranes during the 1-minute interval between handling 
operations.  The right portion of Figure 6 shows the optimal YC assignment for this problem.  
Here, the ‘X’s are replaced by numbers indicating which crane handles each job.  The costs of 
the transitions between stages (1 and 2), (2 and 3), and (3 and 4) are 0, 7, and 5 respectively.  
Figure 7 shows two YC schedules, generated using different time references, for a realistic 
scenario involving a 60-slot block, 2 YCs, 57 jobs, and a minimum YC separation of 8 slots.  
Each job is represented as a rectangle whose height is 3 minutes and width is 8 slots. 
 

 slot  slot interval 
start end  1 2 3 4 5 6 7 8 9 10 11 12  1 2 3 4 5 6 7 8 9 10 11 12
-3 1    X             1          
1 5        X    X         2    3  
5 9  X  X     X      1  2     3     
9 13  X      X  X     1      2  3    

13 17       X             2       
17 21   X          X   1          3 
21 25       X     X        2     3  
25 29   X      X       1      2     
29 33        X   X  X        1   2  3 
33 37    X    X         1    2      
37 41             X             3 

Figure 6.  The activity matrix for Figure 5, and the optimal YC assignment found using DP. 
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In Section 3.2. it was mentioned that, since RTGCs only gantry about 16 slots per minute, 
the 1 minute allotted for gantrying between container handling operations may not be 
adequate.  This is a drawback to the scheduling paradigm introduced here.  However, let us 
observe that the DP procedure adopted in Stage 2 is designed to minimize YC gantrying.  
Furthermore, since the majority of handling and gantry moves require substantially less than 3 
and 1 minutes respectively, it is very likely that YCs will have more than 1 minute to make a 
gantry move during actual operations.  For example, consider the job that the arrow points to 
in the left-hand schedule in Figure 7.  Even if YC 4 begins this job late (due to the preceding 
32-slot, (i.e. 2-minute) gantry move), it can still make up for lost time during the next 5 
moves.  It is unlikely that YC 4’s lateness during the next 5 moves will interfere with YC 3.  
But in a more congested scenario with 3 YCs instead of 2, YC 4’s lateness might indeed  
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affect YC 3.  This would be a problem.  However, if there were 3 YCs instead of 2, the 
chances that a 32-slot gantry move would be scheduled in a 60-slot block would be very low. 

The schedules in Figure 7 contain discrete time/space holes that can be used as input data 
for online algorithms that decide which stack among many should service a last-minute QC or 
external truck job.  For example, if suddenly a container needs to be stored at time 253, we 
see that YC 3 is available and could store the container anywhere among slots 1-21 during the 
4-minute time interval from time 255-259 (Figure 7, left).  Overall, the above YC scheduling 
algorithm works particularly well on congested scenarios.  Thus it works best in situations 
where the need for decision support is greatest.  Future studies will consider how use the YC 
schedules to guide on-line container storage algorithms such as those mentioned in Section 2.   

4.  SIMULATION EXPERIMENTS 
Our simulation model is a computer program written in the C++ language.  It tracks the 
movement of every container that passes through a terminal during a several-week period and 
has been designed to evaluate container storage and YC scheduling algorithms.  It uses less 
than 2 hours of CPU time on a PC to simulate two weeks of activity at a mega-terminal with 7 
million QC lifts annually.  Within the two-week simulation period, roughly 180 vessels are 
processed; 270,000 individual QC lifts are made; the storage locations, and times of yard 
storage and retrieval, for about 140,000 containers are tracked; and the schedules for up to 
120 yard cranes are constructed from scratch about 7000 times.  Thus, YC scheduling takes 
on average less than 1 second per instance.  New schedules are constructed for all YCs in 
rolling horizon fashion every 3 minutes of simulation time.  The planning horizon is one hour.  
We assume all containers are 20 feet long.  Containers in the QC lists always have an 
assigned yard location unless they are the first container from their respective group to be 
unloaded in a particular week.  Such first arrivals are called trailblazing containers.  As the 
unloading of such a container approaches, an online procedure is activated which chooses a 
stack for the container among those stacks devoted to that container’s destination vessel.  In 
this paper, the algorithm simply selects a random stack among all possible candidates.  More 
sophisticated procedures will be studied in the future. 

Parameters that can be adjusted include the number of berths; number of scheduled vessel 
calls per week; number of QCs processing each vessel; number of QC lifts for each vessel; 
number of yard blocks and zones; number of rows and slots per block; number of YCs 
operating in each zone; duration of stay for each vessel; time required per handling move for 
QCs and YCs; YC gantry time allotted between handling moves; and the yard partition. 

In the experiments, we consider two container terminals: a 2-berth terminal (Terminal 1) 
and a 9-berth mega-terminal (Terminal 2).  The specifications of these terminals are given in 
Table 9.  Both terminals are strictly sea-to-sea transhipment terminals.  For the small and 
large terminals, we test 15 and 8 different yard partitions respectively.  In each partition, all 
regions have the same size as shown in Table 10.  In partitions 13-15 for Terminal 1 and 7-8 
for Terminal 2, regions are smaller than 1 slot; for all other partitions, the regions consist of 
sets of contiguous slots.  The number of vessels per region is always 1.  For each combination 
of terminal and yard partition, we test thirteen different scenarios.  In each scenario, a unique 
combination of values is assigned to five different parameters: the number of YCs per zone; 
minimum separation between YCs (in slots); YC handling time per job; YC gantry time 
allotted between handling jobs; and whether clumping is used in the YC scheduling 
algorithm.  Clumping saves CPU time by scheduling all jobs in the same stack consecutively, 
but not necessarily on the same YC.  Scenario 1 is considered standard operating practice; 
other scenarios are designed for comparison with Scenario 1.  The scenarios, and the results 
of the simulation experiments, are shown in Tables 11 and 12.  For each scenario and yard 
partition, we show the average amount of earliness-tardiness (in container-minutes) observed 
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per YC schedule.  This value indicates how difficult it is for the YCs to process the workload 
generated by the QCs, which are working at 40 moves per hour.  A high (low) value means 
that the YCs have substantial (little) difficulty keeping up with the QCs.  YC schedules are 
 
Table 9.  Container terminals used for simulation experiments 

 Terminal 1 Terminal 2
berths 2 9 
vessel calls per week 10 90 
expected QC lifts per week 35000 135000 
yard blocks, zones 10, 5 45, 15 
slots per block 60 40 
rows per slot 6 8 

 
Table 10.  Yard partitions considered for Terminals 1 and 2 

yard partition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
stacks/region for Terminal 1 360 180 120 90 72 60 36 30 24 18 12 6 3 2 1 
stacks/region for Terminal 2 160 80 40 32 16 8 4 2 - - - - - - - 

 
Table 11.  Average total job earliness + tardiness in YC schedules for Terminal 1 
Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 
cranes/zone 4 3 5 6 7 8 4 4 4 4 4 8 8 
separation 8 8 8 8 8 8 4 12 8 8 8 2 2 
handl time 3 3 3 3 3 3 3 3 3 3 3 1.5 1.5 
gantry time 1 1 1 1 1 1 1 1 0 2 1 0 0 
clumping? Y Y Y Y Y Y Y Y Y Y N Y N 
 1 7414 10314 6056 6015 5801 5813 6996 8764 4695 11032 7166 277 267 
 2 5926 7048 5501 5678 5550 5470 4244 8098 3993 8180 6022 271 256 
 3 5678 6606 5330 5353 5237 5234 4275 7444 3499 7943 5428 273 264 
 4 5327 5991 4926 4989 5026 4825 3541 6998 3214 7449 5155 274 266 
 5 4879 5541 4659 4679 4667 4711 3552 6179 3099 7039 4819 267 261 
 6 4723 5788 4528 4492 4471 4503 3178 5202 2864 6577 4673 268 262 
yard 7 3234 3954 3094 3056 3045 3097 2799 3518 1968 4787 3239 268 262 
partition 8 2992 3784 2768 2691 2726 2718 2789 3041 1738 4313 2933 265 259 
 9 2653 3449 2395 2393 2329 2386 2524 2782 1528 4035 2593 264 254 
 10 2340 3234 2140 2114 2034 2057 2426 2522 1350 3877 2286 253 251 
 11 2210 3284 1850 1973 1824 1741 2102 2378 1296 3234 2053 242 237 
 12 1918 3444 1789 1629 1650 1612 1850 2237 1113 2989 1777 217 215 
 13 2208 3014 1827 1732 1626 1551 1829 2380 1166 3392 1933 197 206 
 14 2064 3100 1744 1716 1626 1624 1899 2374 1188 3177 2056 199 201 
 15 2016 3030 1762 1631 1732 1731 1834 2281 1158 2973 2036 202 199 
 
Table 12.  Average total job earliness + tardiness in YC schedules for Terminal 2 
Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 
cranes/zone 4 3 5 6 7 8 4 4 4 4 4 8 8 
separation 8 8 8 8 8 8 4 12 8 8 8 2 2 
handl time 3 3 3 3 3 3 3 3 3 3 3 1.5 1.5 
gantry time 1 1 1 1 1 1 1 1 0 2 1 0 0 
clumping? Y Y Y Y Y Y Y Y Y Y N Y N 
 1 43426 46719 43091 42844 42663 42968 25640 59853 29655 57939 41899 1444 1343
 2 37881 39344 37303 37292 37111 37272 22294 44336 25197 50664 36423 1393 1331
 3 21250 22745 20950 20930 20913 20918 18582 21806 13397 29367 20598 1341 1276
yard 4 17349 19176 16956 16868 16942 16912 16890 17816 10583 24211 16554 1303 1237
partition 5 10692 12999 10062 9945 10120 9983 10503 11495 6326 15469 9972 1136 1084
 6 8450 11434 7714 7534 7372 7679 7826 9296 5121 13859 8015 861 836 
 7 8198 11921 6939 6822 6856 6739 7390 8817 4675 12452 7392 747 732 
 8 7628 10971 6727 6479 6305 6398 7317 8564 4455 11868 7340 700 694 
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generated on a terminal-wide basis.  Each entry in Table 11 (12) is obtained by averaging 
results for all YC schedules generated during 3 (2) two-week simulation runs.  In each run, a 
unique yard template is constructed before containers begin to flow.  The entries in Table 12 
are larger than in Table 11 because more jobs are considered per YC schedule. 

Results for the two terminals follow the same general trend.  Overall, for both terminals, 
the higher-numbered yard partitions vastly outperform the lower-numbered ones.  Indeed, the 
best partition for each scenario divides the stackyard into regions that are at most the size of a 
single slot.  This is true despite the fact that near-optimal yard templates were constructed for 
every partition using simulated annealing.  Note that the higher-numbered partitions when YC 
gantry time is 2 minutes (Scenario 10) still outperform the lower-numbered partitions when 
gantry time is only 1 minute (Scenario 1).  These results show that it is best to spread out 
cargo in the yard.  They also indicate that pure online container storage algorithms have 
excellent promise.  These online algorithms do not use yard templates and do not store 
containers in batches.  They decide where to store a container based upon a scan of the real-
time status of every stack in the yard just prior to unloading from a vessel.   

Results for Scenarios 2-6 show that increasing the number of YCs per zone beyond 5 
yields very little benefit.  Scenarios 7 and 8 show how crane separation constraints hamper 
YC operations.  In Scenario 7, cranes are allowed to come within 4 slots of each other, while 
in Scenario 8, they must remain at least 12 slots apart.  Results show that crane separation 
requirements definitely affect the operational efficiency of YCs, but perhaps less than was 
expected.  Scenarios 9 and 10 show that YC gantry speed (and by extension YC handling 
speed) plays a large role in determining YC operational efficiency.  Scenario shows 11 shows 
that clumping has a slight negative effect on the quality of YC schedules.  Scenarios 12 and 
13 are the terminal manager’s dream; YCs are ubiquitous and each crane works as fast as a 
QC.  These scenarios are used as a control to make sure that earliness-tardiness is being 
measured properly.  The majority of earliness-tardiness in these scenarios comes from the 
initial adjustment of YC start times based on the reference time.  Overall, the best yard 
partitions for Terminals 1 and 2 are partitions 12 and 8 respectively.  For reasons of 
computational efficiency, the YC scheduling algorithm that uses clumping is preferred.   

5.  CONCLUSION AND FUTURE RESEARCH 

In this paper, we developed on-line algorithms for making container storage decisions and 
constructing yard crane schedules inside a maritime container transhipment terminal.  We 
evaluated their performance using a home-made computer simulation model that tracks 
activity at a container terminal during a several-week period.  Although our results do not 
conclusively show how ports can achieve QC rates approaching 40 moves per hour, they do 
indicate that QC rates can be increased by spreading out cargo in the container yard.  So far, 
we have only investigated template-based container storage policies and two different YC 
scheduling algorithms.  Future studies will expand the number of algorithms considered and 
will compute the long-run, average QC rates that these algorithms are capable of sustaining. 
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